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This paper proposes a discrete singular convolution-finite subdomain method
(DSC–FSM) for the analysis of incompressible viscous flows in multiply connected
complex geometries. The DSC algorithm has its foundation in the theory of distri-
butions. A block-structured grid of fictitious overlapping interfaces is designed to
decompose a complex computational geometry into a finite number of subdomains.
In each subdomain, the governing Navier–Stokes equations are discretized by using
the DSC algorithm in space and a third-order Runge–Kutta scheme in time. Infor-
mation exchange between fictitious overlapping zones is realized by using the DSC
interpolating algorithm. The Taylor problem, with decaying vortices, could be solved
to machine precision, with an excellent comparison against the exact solution. The
reliability of the proposed method is tested by simulating the flow in a lid-driven
cavity. The utility of the DSC–FSM approach is further illustrated by two other
benchmark problems, viz., the flow over a backward-facing step and the laminar
flow past a square prism. The present results compare well with the numerical and
experimental data available in the literature. c© 2002 Elsevier Science (USA)

I. INTRODUCTION

Over the past few decades, both the computational and experimental approaches to the
numerical simulation of incompressible viscous flows have attracted great attention. This
is primarily due to the wide industrial and engineering applications, and their relevance
to complex flow phenomena, such as multiphase flows, and fundamental issues, such as
turbulence. The governing Navier–Stokes equations are nonlinear and, in general, do not
admit an analytical solution. For asymptotic parameter regions, analytical approaches and
approximations are developed to improve the understanding of the nonlinear governing
equations. For intermediate parameter regions, numerical computations are indispensable
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for attaining the full-scale solution for the Navier–Stokes equation. However, numerical
simulation of incompressible and viscous flows can be a challenge. In many cases, compu-
tational difficulty stems from the inherently complex geometry and boundary conditions of
the problem, which excludes the use of high-accuracy global methods. Complex geometry
often induces singularities in a flow profile which creates numerical instabilities. A realistic
3D simulation for a complex geometric problem often requires millions of grid points and
the amount of computations involved are formidable even for the most powerful supercom-
puter. Advances in computational algorithms is of prime importance for overcoming the
above-mentioned difficulties.

A variety of numerical techniques have been developed in the last century. Generally
speaking, computational methods which are currently employed in solving fluid flow prob-
lems can be classified into two categories: global methods and local methods. Global meth-
ods, such as spectral methods [1, 2], pseudospectral methods [3, 4], fast Fourier transform
[5, 6], and differential quadrature [7], approximate a differentiation at one point by all grid
points in the computational domain and thus can be highly accurate. For example, spectral
methods converge exponentially with respect to mesh refinement for approximating an an-
alytical function [4] and, thus, have the potential for being used in high-precision, highly
demanding large-scale computations, such as the simulation of turbulence. Many global
approaches have been successfully applied to the study of flow features in simple geome-
tries, such as channels, pipes, eccentric cylinders, and so forth. However, global methods
are well-known for their limitations in handling complex boundary conditions and irregular
geometries. Indeed, for simulating the flow in complex geometries, local methods, such as
finite differences [8, 9], finite elements [10–14], finite strips [15], and finite volumes [16],
are the dominant approaches. Local methods utilize information at the nearest-neighboring
grid points to approximate a differentiation at a point and, thus, are much more flexible in
handling complex boundary conditions and irregular geometries. However, local methods
converge slowly with respect to mesh refinement and are extremely expensive for achieving
high precision. In cases such as combustion and turbulent flows, where high computational
accuracy is desirable, global methods could be preferred. There are two ways to extend the
applicability of global methods to complex boundaries. One approach is to divide the com-
putational domain into a number of regular subdomains, and implement a spectral method
within each of these subdomains. This multidomain approach is referred as spectral element
method [17] and/or pseudospectral element method [18]. The objective of this approach is
to maintain the spectral method’s accuracy in the computations over irregular geometries
[19]. The second approach involves a mapping of an irregular computational domain into a
regular one, in which spectral methods can be implemented. One method to attain this map-
ping is through the solution of the Poisson equation for the new coordinates in terms of the
old ones. This method was studied by many researchers [20, 21]. Significant progress has
been made in both approaches. In particular, the spectral element approach has shown great
promise for its application to complex geometries. However, development on this line is
hindered by the fact that matching between different element domains leads to a devastative
reduction in computational accuracy [17]. Consequently, the global accuracy is degraded by
the poor approximation between element boundaries. How to achieve uniform convergence
for the spectral element approximation remains a major issue of research. Recently, Yang
et al. [22] proposed a domain-matching scheme which overlaps one grid point between the
two neighboring spectral elements. As such, the grid sizes of all subdomains have to be the
same and the overall accuracy is still quite low.
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Recently, the discrete singular convolution (DSC) algorithm was proposed as a potential
approach for the computerized realization of singular integrations [23, 24]. Mathematical
foundation of the algorithm is the theory of distribution and wavelet analysis. Sequences of
approximations to the singular kernels of Hilbert, Abel, and delta types were constructed.
Applications to analytical signal processing, Radon transform, and surface interpolation are
discussed. Numerical solutions to differential equations are formulated via singular kernels
of the delta type. By appropriately choosing the DSC kernels, the DSC approach exhibits
the global method’s accuracy for integration and the local method’s flexibility in handling
complex geometries and boundary conditions. Many DSC kernels, such as (regularized)
Shannon’s delta kernel, (regularized) Dirichlet kernel, (regularized) Lagrange kernel, and
(regularized) de la Vallée Poussin kernels, are constructed for a number of applications, such
as numerical solution of the Fokker–Planck equation [23, 24] and the Schrödinger equation
[25]. The DSC algorithm was also utilized for waveguide model analysis, electromagnetic
wave propagation [26], and structural (plate and beam) analysis [27, 28] with excellent re-
sults. Most recently, the DSC algorithm was used to resolve a few numerically challenging
problems. It was utilized to integrate the (nonlinear) sine–Gordon equation with the initial
values close to a homoclinic orbit singularity [29], for which conventional local methods
encounter great difficulties and numerically induced chaos was reported for such an integra-
tion [30]. Another difficult example, which could be resolved by using the DSC algorithm,
is the integration of the (nonlinear) Cahn–Hilliard equation in a circular domain, which is
challenging because of the fourth-order artificial singularity at the origin and the complex
phase space geometry [31]. What is most relevant to the present work is the DSC solution for
the Navier–Stokes equation. A DSC–successive overrelaxation (DSC–SOR) algorithm was
developed for simulating the incompressible viscous flows with no-slip boundary condition
for the driven cavity problem [32]. The DSC–SOR algorithm provides a potentially reliable
approach for high-precision, large-scale computations. However, most of the previous use
of the DSC algorithm was essentially on simple, regular domains.

The purpose of the present work is to develop a DSC–finite subdomain method (DSC–
FSM). The previous DSC–SOR algorithm [32] is implemented inside each subdomain and
a highly accurate DSC interpolation algorithm is employed for data transfer between any
two neighboring subdomains. Although the present algorithm is constructed by using an
idea similar to spectral elements or domain decomposition, the DSC algorithm is a distinct
local approach with user-defined computational bandwidth and controllable accuracy.

This paper consists of four sections. Section 2 is devoted to the DSC–FSM. The DSC
algorithm is briefly reviewed. The total computational domain is divided into a number
of simple regular subdomains. The governing equations on each subdomain are described
along with the solution procedure. A third-order Runge–Kutta scheme is employed for
advancing the time. The governing equations are spatially discretized by using the DSC
algorithm. A fractional-time-step and potential-function method (FTSPFM) [32] is adopted
to overcome the difficulty which occurs in the treatment of the pressure field in incompress-
ible flows. The iterative SOR solver is utilized for solving the resulting Neumann–Poisson
equation. In Section 3, the validity and utility of the present DSC–FSM approach is ex-
plored for numerical simulation of incompressible flows. The approximation error and rate
of convergence of the DSC–FSM method is examined by simulating the driven cavity flow
at Re = 400, 5,000, and 10,000. The flow over a backward-facing step and laminar flow
past a square prism are numerically simulated to demonstrate the utility and robustness
of the proposed method in handling more-complex problems. It is found that the present
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numerical results agree well with the previous benchmark solutions and the experimental
data available in the literature. Finally, conclusions are given in Section 4.

II. DISCRETE SINGULAR CONVOLUTION–FINITE SUBDOMAIN METHOD

The DSC–FSM is presented in this section. Detailed analysis and description is given in
the following subsections.

A. Discrete Singular Convolution

For the sake of integrity and simplicity, the discrete singular convolution (DSC) algorithm
is briefly described in this subsection. The reader is referred to the original papers [23, 24]
for more details. The DSC algorithm concerns with computerized realization of evaluating
mathematical distributions. Distributions are not well defined in the usual sense and may not
have a value at all. Particular examples are kernels of the Hilbert and Abel types. These sin-
gular kernels are of crucial importance to a number of fields, such as electrodynamics, Radon
transform, analytical function theory, linear response theory, and spectral property of corre-
lation functions. For data (surface) interpolation and solving partial differential equations,
singular kernels of the delta type are invoked. In the DSC algorithm, function f (x) and its
derivatives with respect to a coordinate at a grid point x are approximated by a linear sum of
discrete values { f (xk)} in a narrow bandwidth [x − xW , x + xW ]. This can be expressed as

f (q)(x) ≈
W∑

k=−W

�
(q)
�,�(x − xk) f (xk), (1)

where superscript q (q = 0, 1, 2, . . .) denotes the qth-order derivative with respect to x .
The {xk} is a set of discrete sampling points centered around the point x . Here � is a reg-
ularization parameter, � is the grid spacing, and 2W + 1 is the computational bandwidth,
which is usually smaller than the size of the computational domain.

In Eq. (1),��,�(x) is a convolution kernel that is an approximation to the delta distribution.
For band-limited functions, the delta distribution can be replaced by an ideal low-pass filter;
hence, many wavelet scaling functions can be used as the DSC convolution kernels. One
interesting example is to regularize Shannon’s wavelet scaling function,

��,�(x − xk) = sin �
�

(x − xk)
�
�

(x − xk)
exp

(
− (x − xk)2

2�2

)
, � > 0, (2)

where � determines the width of the Gaussian envelop and is often varied in association
with the grid spacing, i.e., � = r�, where r is a parameter chosen in computations. The
expression in Eq. (2) is often referred as regularized Shannon’s delta kernel. Note that the
use of the Gaussian regularizer can extend the domain of applicability of the delta kernels
to tempered distributions and even to exponentially growing functions [34]. The expression
of Eq. (1) provides extremely high computational efficiency both on and off a grid. In fact,
with an appropriate �, it can provide exact results when the sampling points are extended
to a set of infinite points for certain band-limited L2 functions. By appropriately choosing
W, r , and �, the resulting approximation matrix for interpolation and solving differential
equations has a banded structure, which gives the DSC algorithm optimal accuracy and
efficiency for a variety of numerical computations.
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It should be pointed out that although the regularized Shannon’s delta kernel is used to
illustrate the DSC approximation of the delta distribution here, there are many other DSC
kernels that perform equally well, as shown elsewhere [23, 26, 29]. The grid used in Eq. (1)
is uniform because only a single grid spacing is prescribed. In computations, Eq. (1) is very
efficient since just one kernel is required for the whole computational domain [a, b] for
given � and r . We refer to this kernel as being translationally invariant. It is noted that to
maintain the kernel property of translation invariance near a computational boundary, the
functions f (xk) have to be located outside the computational domain [a, b], where their
values are usually undefined. Therefore, it is necessary to create fictitious domains outside
the computational boundaries. In the DSC algorithm, function values at these fictitious
domains are generated according to the boundary condition and the physical behavior of the
solution at the boundaries. For example, in Dirichlet boundary conditions, such f (xk) can be
taken to be f (a) or f (b); in periodic boundary conditions, such f (xk) may be obtained by a
periodic extension from their corresponding values inside the computational domain [a, b];
and in Neumann boundary conditions, such f (xk) may be determined by f ′(a) (or f ′(b)).

When the regularized Shannon’s delta kernel is used, the detailed expressions for �
(q)
�,�(x)

can be analytically given by differentiations,

�
(q)
�,�(x) = dq

dxq

[
sin �

�
x

�
�

x
exp

(
− x2

2�2

)]
. (3)

Once the value of r is chosen, the coefficients �(0)
�,�(x), �(1)

�,�(x), and �(2)
�,�(x) depend only

on the grid spacing �. Therefore, when the grid spacing is prescribed, the coefficients need
to be computed only once and can be used during the entire computation.

B. Governing Equations and Method of Solution

The Navier–Stokes equations, which govern the incompressible, viscous flow in two-
dimensions are

D(U ) = 0, (4)

∂U

∂t
= F(U ) − ∇ p, (5)

where

D(U ) = ∂u

∂x
+ ∂v

∂y
, (6)

F(U ) = [ f, g]T , U = [u, v]T , ∇ p =
[
∂p

∂x
,
∂p

∂y

]T

, (7)

f = 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2

)
−

(
u

∂u

∂x
+ v

∂u

∂y

)
,

(8)

g = 1

Re

(
∂2v

∂x2
+ ∂2v

∂y2

)
−

(
u

∂v

∂x
+ v

∂v

∂y

)
.

Here, the velocity components in the x- and y-directions are represented by u and v,
respectively, and p the pressure, t the time, � the fluid density, and the Reynolds number
Re = U0L/�, in which � is the kinematic viscosity of the fluid.
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FIG. 1. Subdomain division with interfaces and fictitious overlapping zones.

For incompressible flows, there is no coupling between the continuity and momentum
equations (4) and (5). To overcome the difficulty in solving these equations, a well-known
approach is to derive the Poisson equation for pressure from the incompressible condition,
Eq. (4). Many specially designed schemes have been developed [35–40]. In this work, we
adopt a fractional-time-step and potential-function method (FTSPFM), which is a variant
of the marker and cell (MAC) method [39] for solving the governing Eqs. (4) and (5). In the
FTSPFM approach, an intermediate velocity field and a potential function are employed to
update the values of the velocity and pressure fields at a new time step [32]. The present
explicit scheme holds special appeal for extending it to complex geometries. The choice of
an implicit or a semi-implicit version is, in general, constrained by the large-scale memory
requirements and the inevitable matrix inversion procedure which consumes a huge CPU
time. Nevertheless, an implicit scheme was implemented in conjunction with a simply
connected square domain [27].

The total computational domain is divided into a number of simple subblocks. A uniform
grid in both x- and y-directions is employed within each subdomain. The present treatment
of block interfaces is distinct from the conventional approaches, due to the existence of
fictitious domains. Due to the nature of the support envelope employed in DSC, it requires
fictitious overlapping subdomains. This relation between subdomains is illustrated in Fig. 1.
Block ABDC is divided into two subdomains, ABFE and EFDC. The dashed-line EF is the
common line connecting block ABFE and block EFDC. The area of GHFE is a fictitious do-
main of EFDC and a fictitious overlapping zone for subdomain ABFE. Similarly, the area of
EFJI is a fictitious domain of ABFE and a fictitious overlapping zone for subdomain EFDC.
The size of fictitious overlapping zones is determined by the computational bandwidth W
chosen in the DSC algorithm. Hence, it is very flexible and can be adjusted to the size of
the overlapping zones to meet the accuracy requirement of different problems by changing
the value of the computational bandwidth W . The DSC algorithm is indeed employed for
both interpolation and information exchange among neighboring subdomains.

All spatial derivatives in Eqs. (4) and (5) are discretized by using the DSC algorithm.
In each subdomain, the momentum equation in the horizontal direction is written at point
(i + 1

2 , j), the momentum equation in the vertical direction is written at point (i, j + 1
2 ),

and the pressure is written at point (i, j). The staggered grid system is shown in Fig. 2.
The continuity equation is approximated at point (i, j). Therefore, the discretized forms of
Eqs. (6)–(8) can then be expressed as

Dh(U ) =
W∑

k=−W

�(1)
�,�(k�xN )ui+k, j +

W∑
k=−W

�(1)
�,�(k�yN )vi, j+k, (9)
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FIG. 2. The staggered grid system.

∇h p =
[

W∑
k=−W

�(1)
�,�(k�xN )pi+k, j ,

W∑
k=−W

�(1)
�,�(k�yN )pi, j+k

]T

, (10)

fh = 1

Re

[
W∑

k=−W

�(2)
�,�(k�xN )ui+ 1

2 +k, j +
W∑

k=−W

�(2)
�,�(k�yN )ui+ 1

2 , j+k

]

−
[

ui+ 1
2 , j

W∑
k=−W

�(1)
�,�(k�xN )

(
ui+ 1

2 +k, j

) + vi+ 1
2 , j

W∑
k=−W

�(1)
�,�(k�yN )

(
ui+ 1

2 , j+k

)]
,

(11)

gh = 1

Re

[
W∑

k=−W

�(2)
�,�(k�xN )vi+k, j+ 1

2
+

W∑
k=−W

�(2)
�,�(k�yN )vi, j+ 1

2 +k

]

−
[

ui, j+ 1
2

W∑
k=−W

�(1)
�,�(k�xN )

(
vi+k, j+ 1

2

) + vi, j+ 1
2

W∑
k=−W

�(1)
�,�(k�yN )

(
vi, j+ 1

2 +k

)]
,

(12)

Fh(U ) = [ fh, gh]T , (13)

where �(1)
�,� and �(2)

�,� are coefficients of the regularized Shannon’s delta kernel, given in
Eq. (3). The spatial discretization labels (subscripts) on the left hand sides are omitted
for simplicity. Here, �xN and �yN denote the grid spacings in the x- and y-directions,
respectively, for the N th computational block. By substituting Eqs. (9)–(13) into Eqs. (4)
and (5), the following semidiscretized approximation for Eqs. (4) and (5) is obtained:

Dh(U ) = 0, (14)
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dU

dt
= Fh(U ) − ∇h p. (15)

A third-order Runge–Kutta (R–K) scheme is employed for the temporal discretization.
In this scheme, the ordinary differential equation (15) can be solved by

U (1) = �1U n + �1
[
�t

(
Fh(U n) − ∇h p(1)

)]
, (16)

U (2) = �2U n + �2
[
U (1) + �t

(
Fh

(
U (1)

) − ∇h p(2)
)]

, (17)

U n+1 = �3U n + �3
[
U (2) + �t

(
Fh

(
U (2)

) − ∇h pn+1
)]

, (18)

where (�1,�2,�3) = (1, 3/4, 1/3) and (�1, �2, �3) = (1, 1/4, 2/3). Here, �t is the time
increment in each iteration. The U n and pn are the velocity and pressure at time tn , respec-
tively. The U (1), p(1) and U (2), p(2) are their corresponding first- and second-step values,
while U n+1 and pn+1 are the velocity and pressure at time tn+1, respectively.

The integration stability of the explicit scheme is limited by the the Courant–Friedrich–
Lewy (CFL) condition [41], which is given as

max(�t) ≤ min

(
4

Re(|u| + |v|)2
,

Re((�xN )2 + (�yN )2)

4

)
. (19)

A fractional-time-step and potential-function method (FTSPFM) [32] associated with
Eqs. (14) and (16)–(18) is employed to update the values of the velocity and pressure
fields at a new time step, while an iterative SOR solver is utilized for solving the resulting
Neumann–Poisson equation. The details of the discretized expressions for the FTSPFM and
elaborate details of the numerical solution procedure are available in Refs. [32, 33].

III. RESULTS AND DISCUSSION

In this section, we examine the validity and explore the utility of the DSC–FSM ap-
proach for the numerical simulation of incompressible viscous flows. As a precursor, the
2D incompressible Navier–Stokes equations (4) and (5) in a square domain with periodic
boundary conditions, the Taylor problem, are solved to validate the proposed method. The
exact solution is available. The L1 and L∞ errors and numerical orders are compiled in
Table I for Re = ∞. Excellent accuracy is achieved with small mesh sizes. Some numerical
orders are as high as 17.7, indicating that the proposed approach is extremely accurate.
More details about solving this problem can be found in Ref. [27].

Further, three benchmark problems, viz., flow in a driven cavity, flow over a backward-
facing step, and flow past a square prism, are chosen for the investigation. Although
the first two problems have a simply connected geometry, they depict rich and complex
fluid flow patterns. Also, the accurate simulation of the complex spatiotemporal dynam-
ics in the third problem constitutes a severe test for the new computational scheme. In
these simulations, the computational bandwidth and regularization parameter are chosen
as W = 16 and r = 2.85, respectively. Indeed, it is possible to achieve even higher com-
putational accuracy for a given fluid flow problem, by choosing a larger computational
bandwidth and its corresponding value of r . The relation between the numerical accuracy
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TABLE I

Errors and Numerical Orders for the Taylor Problem

N Time L1 error L1 order L∞ error L∞ order

8 1.0 1.52 (−4) — 5.13 (−5) —
2.0 2.17 (−4) — 7.13 (−5) —

16 1.0 6.76 (−10) 17.78 6.82 (−10) 16.2
2.0 9.68 (−10) 17.77 8.81 (−10) 16.3

32 1.0 2.03 (−14) 15.02 1.45 (−14) 15.52
2.0 4.05 (−14) 14.54 2.31 (−14) 15.22

Note. N refers to the number of grid points in each dimension.

and the DSC parameters was explored for the incompressible Euler flow problem [24].
The overrelaxation factor is set to 	 = 1.28. It is quite efficient to set the convergence
constant as small as ε = 10−6. All computations were carried out on DEC/Compaq work-
stations.

A. Lid-Driven Cavity Flow: A Numerical Test

Flow in a lid-driven cavity is among the well-established benchmark test problems used
to check the reliability of new computational schemes. The wide popularity of this test
problem can be attributed to the following: (i) a complete lack of ambiguity in enforcing
the boundary conditions; (ii) a fixed fluid flow domain of interest even with an increase in
the Reynolds number (Re); and (iii) the existence of a variety of the fluid flow phenom-
ena that occur in incompressible flows, viz., eddies, secondary flows, complex 3D flow
patterns. It is indeed a challenge to any potential numerical method to simulate the entire
spectrum of these fluid flow features (which vary with the Reynolds number). Thus, the
problem of flow in a driven cavity offers an ideal framework in which meaningful and
detailed comparisons can be made between the results obtained from experiment, theory,
and computation [42]. The availability of a vast amount of literature [43–46] is a testimony
to this. Therefore, it is quite natural to choose this problem for an extensive validation of
the present DSC–FSM approach. The flow domain of interest is a unit square with the
upper horizontal lid moving with a uniform velocity (u = 1.0, v = 0.0). A no-slip bound-
ary condition (u = v = 0.0) is applied on all the static walls. The velocity at both the
left and right top corners of the domain is fixed as zero, to avoid any mass/momentum
flow through the first two vertical nodes. The value of the potential function is set to
a fixed value (zero) at the midpoint of the bottom side to ensure a unique solution for
pressure.

Error accumulation is an inevitable by-product in the process of transforming the (contin-
uous) governing partial differential equations over a domain into a set of coupled algebraic
equations to obtain a numerical solution at discrete grid points. These errors could be due
to truncation, round off, approximation, interpolation, relaxation parameter, and so forth.
However, these errors should not be allowed to be magnified during the course of the numer-
ical simulation. Thus, it becomes the duty of the numerical fluid flow analyst to ensure that
the accuracy of numerical results is within an acceptable error bound. Several procedures
can be built to reduce this error in a systematic fashion.
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FIG. 3. The steady state vertical velocity in a lid-driven cavity at midheight (Re = 400).

Grid independence. It is important to prove that the numerical solution that was ob-
tained from the present approach is grid independent. To this end, we employ a series of
mesh systems to test the DSC–FSM approach. The following uniform mesh systems were
employed: 9 × 9, 17 × 17, 33 × 33, 65 × 65, and 129 × 129. Furthermore, two finite sub-
domain mesh systems, FSM I and FSM II, were designed with four quadrants. FSM I has
a 65 × 65 grid in the first and third quadrants, while FSM II has a 129 × 129 grid. In the
second and fourth quadrants, FSM I has a 129 × 129 grid, while FSM II has a 65 × 65 grid.
The performance of DSC–FSM on the above-mentioned grid systems is summarized in
terms of predicted velocity distribution for Re = 400. Here, the vertical velocity is shown
in Fig. 3 against the abscissa at midheight (y = 0.5). The variation between the results ob-
tained by different grid systems beyond 65 × 65 grid points is indiscernible. Even the two
finite subdomain mesh systems have shown very close correspondence with a 129 × 129
grid. Thus, the solution obtained by DSC–FSM has a grid-independent character beyond a
mesh size of 65 × 65 grid points.

Convergence. It is customary to look at the rate of convergence for different time
steps adopted in a numerical simulation. The convergence history in terms of the resid-
uals (Res(U )) shown in Fig. 4 refers to different mesh systems used. The Res(U ) is defined
as follows:

Res(u) = max
i, j

[(
un

i, j − un−1
i, j

)
un

i, j

]
. (20)
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FIG. 4. Comparison of the rate of convergence for the lid-driven cavity flow (Re = 400).

In the above equation, the subscript (i, j) refers to the grid point, and n and n − 1 refer to
the current and previous time steps, respectively. We can see in Fig. 4 that results on a fine
mesh exhibit a better convergence history than those on a coarse mesh.

A comparison exercise. A quantitative comparison with the previous benchmark results
obtained by Ghia et al. [44] is presented in Tables II and III for the numerical values along
the midsection of the cavity. The results from the mesh system 129 × 129, from FSM I
and FSM II, as well as that obtained by Ghia et al. [44] are listed. It is noted that all three
DSC-based computational results are highly consistent with each other. Therefore, the re-
sults obtained by using the present domain decomposition approach are as reliable as those
obtained by using a single domain. There are some minor differences between the DSC
results and those of Ghia et al. [44]. However, such minor differences among the results
obtained from different numerical schemes are well within the acceptable limits.

Streamlines and vorticity contours are depicted in Figs. 5a and 5b for Re = 400. To
resolve the thin shear layers more prominently, the simulations were performed at very
the high Reynolds numbers of 5,000 and 10,000. Corresponding streamline visuals are
presented in Fig. 6. In the streamline plot, for Re = 400, there is one dominant primary
circulation, apart from two secondary eddies on the two bottom corners of the cavity. At
higher Reynolds numbers, another secondary eddy emerges at the top left corner of the
cavity. The streamfunction and vorticity values labeled on the plot are in excellent agree-
ment with the earlier investigations [43–46]. Table IV summarizes the minimum value of
streamfunction obtained from different mesh systems. These values are in good conformity
with those obtained by the earlier investigations.
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TABLE II

Comparison of the u-Velocity Profile at x = 0.5 through

the Geometric Center of the Cavity

y Ghia et al. [44] 129 × 129 FSM I FSM II

0.0000 0.00000 0.0000000 0.0000000 0.0000000
0.0547 −0.08186 −0.0786065 −0.0786185 −0.0786129
0.0625 −0.09266 −0.0890649 −0.0890786 −0.0890722
0.0703 −0.10338 −0.0994432 −0.0994584 −0.0994465
0.1016 −0.14612 −0.1408370 −0.1408582 −0.1408399
0.1719 −0.24299 −0.2351602 −0.2351944 −0.2351480
0.2813 −0.32726 −0.3200354 −0.3200696 −0.3199771
0.4531 −0.17119 −0.1691814 −0.1691909 −0.1691994
0.5000 −0.11477 −0.1133524 −0.1133480 −0.1132946
0.6172 0.02135 0.0212599 0.0212582 0.0212557
0.7344 0.16256 0.1601330 0.1601422 0.1601131
0.8516 0.29093 0.2859086 0.2859320 0.2858630
0.9531 0.55892 0.5609661 0.5610127 0.5608601
0.9609 0.61756 0.6204921 0.6205649 0.6204080
0.9688 0.68439 0.6880549 0.6881639 0.6880108
0.9766 0.75837 0.7625521 0.7627000 0.7625694
1.0000 1.00000 1.0000000 1.0000000 1.0000000

B. Flow over a Backward-Facing Step

Having established our confidence in the utility of the DSC–FSM scheme for the sim-
ulation of incompressible flows in a simple square geometry, we consider a more com-
plex problem—the flow over a backward-facing step. This problem has several attractive

TABLE III

Comparison of the v-Velocity Profile at y = 0.5 through

the Geometric Center of the Cavity

x Ghia et al. [44] 129 × 129 FSM I FSM II

0.0000 0.00000 0.0000000 0.0000000 0.0000000
0.0625 0.18360 0.1771959 0.1773318 0.1773084
0.0703 0.19713 0.1906195 0.1907233 0.1906780
0.0781 0.20920 0.2025996 0.2026822 0.2026183
0.0938 0.22965 0.2229257 0.2229858 0.2229127
0.1563 0.28124 0.2740663 0.2741116 0.2740313
0.2266 0.30203 0.2950392 0.2950785 0.2950257
0.2344 0.30174 0.2948710 0.2949092 0.2948241
0.5000 0.05186 0.0530158 0.0530098 0.0530301
0.8047 −0.38598 −0.3784859 −0.3785206 −0.3784538
0.8594 −0.44993 −0.4431324 −0.4431778 −0.4430990
0.9063 −0.23827 −0.3782805 −0.3783378 −0.3782805
0.9453 −0.22847 −0.2263186 −0.2265009 −0.2265056
0.9531 −0.19254 −0.1906588 −0.1909120 −0.1909427
0.9609 −0.15663 −0.1548964 −0.1552420 −0.1553124
0.9688 −0.12146 −0.119740 −0.1201912 −0.1203259
1.0000 0.00000 0.0000000 0.0000000 0.0000000
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FIG. 5. Contour plots for the lid-driven cavity flow (Re = 400). (a) Streamline contours; (b) vorticity contours.
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FIG. 6. Streamline visuals at high Reynolds numbers: (a) Re = 5,000; (b) Re = 10,000.

features, such as flow separation and recirculation zone. Indeed, the problem resem-
bles a two-dimensional plane version of sudden expansion in a pipe. To start with, the
problem is defined, then followed by convergence study and a discussion on the results
obtained.
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TABLE IV

Comparison of the Minimum Streamfunction

Value for Re = 400

Mesh or reference 
min

9 × 9 −0.054083
17 × 17 −0.078159
33 × 33 −0.093478
65 × 65 −0.115421

129 × 129 −0.114010
FSM I −0.113985
FSM II −0.114037
Ref. [45] −0.118
Ref. [46] −0.108
Ref. [43] −0.114
Ref. [44] −0.113909

A backward-facing step is classified according to the expansion ratio of the channel,
which is defined as D/(D − H ). Here, D refers to the channel height on the downstream
side of the step and H is the height of the channel. An expansion ratio of 2 : 1 is chosen
to validate the results of the present investigation with the available experimental results
of Ref. [47] and the numerical results of Refs. [48, 49]. Channel lengths on the upstream
and downstream sides of the step are denoted WI and WE , which are chosen as 4 and 18,
respectively. The Reynolds number of the flow is defined as Re = H V∞/�, where V∞ is the
velocity at the inlet and � is the kinematic viscosity of the fluid. Simulations are performed
over the Reynolds number range of 25–400. It should be pointed out that no experiment is
exactly two dimensional for Re > 200. Furthermore, due to the loss of steadiness, three-
dimensional features become dominant when the Reynolds number reaches a value of 400.
Hence, our investigation is confined to Re ≤ 400.

The imposed boundary conditions are as follows.

• Channel inlet: A uniform velocity profile, which is given as

U = [u(0, y, t), v(0, y, t)]T = [1, 0]T . (21)

• Channel walls: A no-slip boundary condition, which is given as

U = [u, v]T = [0, 0]T . (22)

• Channel exit boundary (x = WI + WE ): A Neumann boundary condition, which is
given as

∂U

∂x
=

[
∂u

∂x
,
∂v

∂x

]T

= [0, 0]T . (23)

Although the computational domain appears simple, as shown in Fig. 7, it contains all the
essential features of a complex geometry. In the present approach, the entire computational
domain is divided into three regular subdomains. Block 2 covers a subdomain with a special
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FIG. 7. The computational domain and finite subdomains for flow over a backward-facing step.

zone of interest with distinct fluid flow patterns. Such a division allows a judicious and
controllable grid size in each block. The same uniform mesh is used in blocks 1 and 3
(�x = �y = h1 = h3), while block 2 has a mesh with �x = �y = h2. The two types of
finite subdomain mesh (FSM) systems employed are FSM III (h1 = 1/32, h2 = 1/48) and
FSM IV (h1 = 1/48, h2 = 1/64). Thus, the two mesh systems will enable a check on the
grid sensitivity of the present simulations.

In order to obtain a unique solution, the potential function �(k) (k = 1, 2, 3) at one of
the grid points (x = 2, y = 1) is fixed as zero at each step of the third-order Runge–Kutta
scheme. The velocity and pressure initial conditions are set to zero inside each block of the
domain. In order to obtain a smoother temporal evolution for the fluid flow features, the
u-velocity value at the inlet boundary is increased from zero at t = 0.0 to a constant value
of 1.0 over 200 time steps.

To verify the convergence behavior of the present DSC–FSM simulations over the mesh
systems chosen, velocity residual error norm in L2 is defined as

e(t) = ∣∣∣∣U n
i, j − U n−1

i, j

∣∣∣∣
l2

=
√√√√ 3∑

Block=1

∑
i, j

(∣∣U n
i, j

∣∣ − ∣∣U n−1
i, j

∣∣)2
(24)

and

|Ui, j | =
√

(ui, j )2 + (vi, j )2, (25)

where the superscripts n and n − 1 denotes the current time step and the previous time step,
respectively. The subscript (i, j) refers to its corresponding grid point. The convergence
history for e(t) is plotted in Fig. 8 for different Reynolds numbers with the mesh system
FSM III (h1 = 1/32, h2 = 1/48). As can be observed, the solution reaches steady state
within a short time for Re = 25. However, it takes a longer time to reach steady state at
higher Reynolds numbers.

Fluid flow features. Streamlines which exemplify the basic fluid flow features in the
channel are presented in Fig. 9 over the Re range of 25–400. Flow separation occurs when
the fluid comes in contact with the upper corner of the step, and a dominant zone of re-
circulation is formed on the downstream. As can be observed, the size of this recirculation
zone grows with an increase in the Reynolds number. The length of the recirculation bubble
xR is the single most important parameter of interest in these simulations. It is the dis-
tance between the step vertical wall (the point of separation) and the point of reattachment.
The value of xR can be determined in several ways. It can be measured from the streamline
visuals in Fig. 9. However, to obtain the value in a precise fashion, the value of x , where
stream function 
 (x, 0) = 0, is identified. The distance between this value of x and the step
refers to the length of reattachment. The variation of reattachment length as a function of
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FIG. 8. The time history of e(t) for flow over a backward-facing step at different Reynolds numbers obtained
by using FSM III (h1 = 1/32, h2 = 1/48).

FIG. 9. The steady state streamline contours of flow over a backward-facing step obtained by using FSM III
(h1 = 1/32, h2 = 1/48). (a) Re = 25, (b) Re = 75, (c) Re = 125, (d) Re = 400.
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FIG. 10. The dependence of reattachment length xR (x/H ) for the flow over a backward-facing step at
Reynolds numbers 25 ≤ Re ≤ 400.

the Reynolds number is plotted in Fig. 10 for 25 ≤ Re ≤ 400. Apart from the experimental
values of Armaly et al. [47], numerical results from Refs. [48, 49] are also plotted. The
detailed values are listed in Table V. Although none of the numerical predictions are closer
to the experimental values, the DSC–FSM results are more encouraging than those of Zhu
[49] and Sethian and Ghoneim [48]. As pointed out earlier, the disagreement between the
numerical and experimental predictions is attributed to the three-dimensionality effects as-
sociated with the latter. The three-dimensionality factor becomes more and more obvious
and important as Reynolds number increases.

C. Flow Past a Square Prism

The flow past a square prism is complex due to the multiply connected nature of the
computational domain. The complex fluid flow patterns that evolve with time adds to this

TABLE V

Reattachment Length (xR) for the Flow over a Backward-Facing Step

Re

25 75 125 250 300 400

Experimental (Ref. [47]) 1.7550 3.9208 6.3083 9.9167 11.1167 13.4583
Present study (SFM III) 1.7529 3.9176 5.5882 8.4706 9.0824 10.0353
Present study (SFM IV) 1.7531 3.9281 5.5907 8.4788 9.0891 10.0418
Numerical (Ref. [49]) 1.7500 3.8750 5.2667 5.9583 6.2500 6.7500
Numerical (Ref. [48]) 0.9583 2.2917 3.3333 4.1250 4.1667 4.0417
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FIG. 11. The geometry of the computational domain and finite subdomains for flow past a square prism.

complexity. Thus, simulation of this problem becomes a severe test case to check the
robustness and reliability of the DSC–FSM approach. For flow past a circular cylinder, the
onset of 3D wake structures occurs at Re ≈ 180 [56]. However, for the square cylinder, no
such clear value is found in the literature. It is believed that because such a value will be
around Re ≤ 300, transition to turbulence takes place in the free shear layers [57]. Beyond
this value, Reynolds-averaged Navier–Stokes equations with appropriate closure models
need to be simulated.

The fluid flow domain of interest is shown in Fig. 11. Theoretically, the far-field boundary
condition can be imposed only at infinity. However, in reality, the boundary can be located
only at a finite distance. After some numerical experiments, a value of eight times the
square prism height was found to be quite satisfactory. The height of the square prism
(d) and the velocity at the inflow boundary (V∞) are used to nondimensionalize length
and velocity, respectively. The boundary conditions applied are as follows. The inflow
boundary is imposed with a uniform velocity profile (u = 1.0, v = 0.0). No-slip (u = v =
0.0) is enforced on the surface of the prism. A far-field boundary condition (u = 1.0, v =
0.0) is applied on the lower and upper boundaries of the fluid flow domain to ensure an
undisturbed flow. A zero-gradient condition (∂u/∂x = 0, ∂v/∂x = 0) is applied on the
outlet boundary. The flow is started from a quiescent state (u = v = 0) and is gradually
accelerated to its boundary condition value of [u(0, y), v(0, y)]T = [1.0, 0]T in about 1000
iterations.

Grid sensitivity and convergence check. To achieve grid-independent results, compu-
tations were performed on two types of fictitious overlapping subdomains, with different
grid sizes over two mesh systems. The computational domain is divided into nine sub-
domains, as shown in Fig. 11 (blocks 1–9). Such a division facilitates a judicious mesh
density in zones of special interest, such as the near wake and around the prism walls,
where steeper gradients are expected. Only uniform grid spacing can be prescribed within
each subdomain. However, this limitation could be easily circumvented by an appropriate
subdomain clustering to achieve a nonuniform grid over the whole domain. Thus, division
of the downstream region behind the square prism into two subdomains (blocks 8 and 9)
has the following advantages: (i) it allows the generation of a finer mesh in the near-wake
region (block 8); (ii) a coarse mesh can be used in block 9; and (iii) the outflow bound-
ary can be located in the far downstream. Two finite subdomain mesh systems, FSM V
and FSM VI, which are listed in Table VI, were employed with a detailed number of grid
points, with uniform grid spacing in each block. The problem of flow past a square prism
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TABLE VI

Geometric Parameters and the Mesh Size in Each Block

for Flow Past a Square Prism

Number of grid points in
Block Bottom-left corner Top-right corner

no. location (xbl , ybl ) location (xtr, ytr) FSM V FSM VI

1 (0.0, 9.5) (60.0, 16.0) 200 × 70 320 × 120
2 (0.0, 0.0) (60.0, 6.5) 200 × 70 320 × 120
3 (0.0, 6.5) (5.0, 9.5) 50 × 40 80 × 50
4 (5.0, 6.5) (6.0, 9.5) 60 × 80 90 × 120
5 (6.0, 8.5) (7.0, 9.5) 35 × 60 60 × 90
6 (6.0, 6.5) (7.0, 7.5) 35 × 60 60 × 90
7 (7.0, 6.5) (8.0, 9.5) 60 × 80 90 × 120
8 (8.0, 6.5) (33.0, 9.5) 140 × 60 180 × 70
9 (33.0, 6.5) (60.0, 9.5) 110 × 40 150 × 50

does not have a steady state solution, as the fluid flow features in the downstream wake
region are steady periodic in nature. Hence, it is mandatory to carry out numerical sim-
ulations over a long time interval up to t ≥ 40T . Here, T refers to the period of vortex
shedding.

FIG. 12. The streamline contours depicting the wake behind the prism for three successive instants of time
over one vortex-sheding period. (a) t = t0; (b) t = t0 + 2T

4
; (c) t = t0 + T .
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Fluid flow features. A Reynolds number value of 100 is chosen to numerically simu-
late both the quantitative and qualitative fluid flow features. The temporal evolution of the
streamline patterns over one complete vortex shedding cycle is depicted in Fig. 12. These
streamlines are wavy and sinuous on the leeward side of the square prism. However, the
upstream side depicts a potential flowlike pattern. Eddies are formed behind the cylin-
der and are washed away into the wake region. This phenomenon is popularly known
as the Kármán vortex shedding. The visual sequence depicted in Fig. 12 reveals the mo-
tion of the eddies. Two eddies are shed within each period from the aft of the square
prism. It is noted that Figs. 12a and 12b are half a vortex-shedding cycle apart. The
periodic nature of the whole sequence is obvious from Figs. 12a–12c. The correspond-
ing vorticity contours for the above sequence is plotted in Fig. 13. The vorticity con-
tours reveal several additional features which could not be directly perceived from the
streamlines. The staggered nature of the Kármán shedding is obvious from these plots.
The eddies are alternatively of positive and negative vorticity. This is indeed reflected
in the form of crests and troughs in the sinuous wake of the streamlines. Further, to
have a better feel for the activity in the near wake, a close-up view is provided in
Fig. 14.

The forces acting on the square prism is of design interest, which can be resolved into
two components, viz., the drag and the lift. The time histories of drag coefficient (Cd )

FIG. 13. The vorticity contours depicting the wake behind the prism for three successive instants of time over
one vortex-shedding period. (a) t = t0; (b) t = t0 + 2T

4
; (c) t = t0 + T .
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FIG. 14. A close-up view of the fluid flow patterns for flow past a square prism. (a) Streamlines; (b) vorticity
contours.
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FIG. 15. The time history of the drag coefficient Cd (Re = 100).

and lift coefficient (Cl) are presented in Figs. 15 and 16, respectively. The coefficients
Cd and Cl are defined as Fd/( 1

2 � V 2
∞d) and Fl/( 1

2 � V 2
∞d), respectively, where Fd and

Fl refer to the drag and lift forces induced on the square prism. These two forces are
in turn obtained by appropriately integrating the contributions of pressure and viscous
resistances over the square prism. Here, only a part of the time history spanning close
to 10 vortex-shedding cycles is presented. The periodic eddy shedding is reflected in the
fluctuating drag coefficient history. From Fig. 15, we can see that there are two local
minima (troughs) within each period, which essentially correspond to the two shed ed-
dies. Further, it is observed that the predicted Cd has a higher value than the drag co-
efficient of a circular cylinder. For the latter case, this value is close to 1.0. The sharp
corners of the square prism pose a greater resistance to the flow than could be caused
by a circular cylinder. However, in contrast to the drag coefficient, the temporal history
of the lift coefficient has only one local minimum. The value of the lift force fluctua-
tion is directly connected to the formation and shedding of the eddy and, therefore, its
value varies between a positive maximum and a negative maximum. Table VII summarizes
some of the engineering design parameters of special interest, such as the time-averaged
drag coefficient (C̄d ), the root-mean-square lift coefficient (Cl,rms), and the Strouhal num-
ber (St). Here, Cl,rms is defined as (C2

l )
1
2 , while the Strouhal number (St) is given by

f d/V∞, where f is the frequency of vortex shedding. As can be observed, the calculated
values obtained by DSC–FSM are in good agreement with the earlier investigations. In
particular, the calculated St, Cl,rms , and C̄d are closer to the recent numerical investiga-
tions of Pavlov et al. [50]. Nevertheless, it should be mentioned that the predicted value
of the Strouhal number is somewhat higher than those obtained in the experiments of
Ref. [55]. We surmise that this minor disagreement is mainly due to the local confinement
errors in the experiments and the freestream boundary condition of the far field in the
computations.

FIG. 16. The time history of the lift coefficient Cl (Re = 100).
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TABLE VII

A Comparison of the Engineering Parameters of Interest

for Flow Past a Square Prism for Re = 100

C̄d Cl,rms St

Present study (FSM V) 1.5270 0.1509 0.1532
Present study (FSM VI) 1.5234 0.1483 0.1526
Pavlov et al. (Num.) (Ref. [50]) 1.51 0.137 0.150
Sohankar et al. (Num.) (Ref. [51]) 1.46 — 0.149
Arnal et al. (Num.) (Ref. [52]) 1.42 — 0.153
Li and Humphrey (Num.) (Ref. [53]) 1.75 — 0.141
Davis and Moore (Num.) (Ref. [54]) 1.63 — 0.151
Okajima (Exp.) (Ref. [55]) — — 0.135

Note. Exp, experimental; Num, numerical.

IV. CONCLUSIONS

This paper proposes a discrete singular convolution–finite subdomain method (DSC–
FSM) for the numerical simulation of viscous incompressible flows. The Navier–Stokes
equations are solved over multiply connected complex domains. The DSC–FSM is devel-
oped by combining the DSC algorithm [23, 24] with a finite subdomain method (FSM). The
DSC kernel performs the dual role of spatial discretization and interpolation (for data trans-
fer) between subdomains. A third-order Runge–Kutta scheme is utilized for the temporal
discretization by choosing an optimum time-step size, as dictated by the stability criterion.
A fractional-time-step potential-function method (FTS–PEM) [32] is employed for the nu-
merical implementation of Navier–Stokes equations. The successive over relaxation (SOR)
scheme is used for solving the Possion equation, which was formulated for the potential
function.

Accuracy of the present simulations are validated against the exact solution of the Taylor
problem. The robustness of the proposed scheme is verified by simulating the fluid flow
features for three standard test problems. The DSC–FSM is tested for both convergence and
mesh sensitivity by simulating the flow in a lid-driven cavity even at Re = 400. Convergent
results were obtained beyond a grid size of 65 × 65 and for finite subdomain mesh systems
FSM I and FSM II. A comprehensive analysis is presented for this problem with extensive
validations. Results are also presented at Re = 5,000 and 10,000. Excellent consistence is
obtained with the results available in the literature [44].

The problem of flow over a backward-facing step with two finite subdomain mesh systems
in the Reynolds number range of 25–400 is investigated. The evolution of the recirculation
region against the Reynolds number is presented in terms of streamlines and vorticity
contours. Prediction of reattachment length by DSC–FSM is found to be closer to the
experimental results than that obtained by other researchers.

Finally, the laminar flow past a square prism with Re = 100 is investigated. The subdo-
mains were judiciously divided to ensure a fine mesh in regions of high velocity gradient,
such as the near wake and around the square prism walls. This problem has served as a
severe test case to demonstrate the flexibility of the DSC–FSM approach in dealing with
complex domains. The von Kármán vortex street, formed behind the square prism, is suc-
cessfully simulated. A number of parameters of design interest, such as the Strouhal number,
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time-averaged drag coefficient, and root-mean-square lift coefficient, are obtained. These
values are found to be in good agreement with the earlier investigations.

In summary, the present DSC–FSM method has the following features.

(i) The topological complexity of irregular geometries could be reduced by employing
finite subdomains. Thus, computation within each subdomain is relatively independent. This
endows the DSC algorithm with greater flexibility in handling truly complex geometries,
which is an asset for potential application to complex physical problems, wherein different
mathematical models are needed to describe different regions of the computational domain.

(ii) Computational accuracy in each subdomain is controllable. Grid sizes employed in
the neighboring subdomains can be independent of each other. This allows arbitrary local
grid refinement for handling possible geometric and parametric singularities in the fluid
flow system.

(iii) The present DSC–FSM approach can be easily parallelized, which can dramatically
enhance the computational efficiency. The present study indicates that the DSC–FSM is
an accurate, reliable, and robust approach for dealing with incompressible viscous flows in
complex geometries.
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